TRƯỜNG THPT THANH MIỆN ĐỀ KIỂM TRA CHUNG 45 PHÚT
MÔN: TOÁN
Thời gian làm bài: 45 phút;
(25 câu trắc nghiệm)
Mã đề thi
132
Câu 1: Cho tam giác
ABC,
gọi điểm
M
trên cạnh BC sao cho MB = 2MC. Phân tích véctơ
AM
theo hai
véctơ
AB
và
AC.
Khẳng định nào sau đây đúng?
A.
2 2
3 3
AM AB AC . B.
2 1
3 3
AM AB AC .
C.
1 2
3 3
AM AB AC . D.
1 1
3 3
AM AB AC .
Câu 2: Cho tam giác
ABC,
có thể xác định được bao nhiêu vectơ (khác vectơ không) có điểm đầu
và điểm cuối là các đỉnh của tam giác đã cho?
A.
4
B.
5
C.
3
D.
6
Câu 3: Trên đường thẳng
MN
lấy điểm
P
sao cho
MN MP 3 .
Điểm
P
được xác định đúng
trong hình vẽ nào sau đây:
A. Hình 3. B. Hình 4. C. Hình 2. D. Hình 1.
Câu 4: Cho ba điểm
A B C , ,
phân biệt. Đẳng thức nào sau đây là đẳng thức sai?
A.
BA AC BC
B.
AB BC AC
C.
AB AC CB
.
D.
CA AB BC
Câu 5: Cho hình bình hành
ABCD
tâm
O.
Đẳng thức nào sau đây sai?
A.
OA OB OC OD 0 . B.
AC AB AD .
C.
BA BC DA DC . D.
AB CD AB CB .
Câu 6: Cho tam giác
ABC
nội tiếp trong đường tròn tâm
O.
Gọi
H
là trực tâm của tam giác.
Trong các khẳng định sau, khẳng định nào đúng ?
A.
OH OG 4
B.
OH OG 3
C.
OH OG 2
D.
3OH OG
Câu 7: Cho tam giác
ABC
với các cạnh
AB c
, CB a
, AC b
.
Gọi
I
là tâm đường tròn nội tiếp tam
giác
ABC.
Đẳng thức nào sau đây đúng?
A.
bIA cIB aIC 0
B.
1 1 1 IA IB IC 0
a b c
C.
aIA bIB cIC 0
D.
aIA bIB cIC 0
Câu 8: Cho
ABC, nếu điểm M thỏa mãn
MA MB MC 0
thì ta có:
A. ABMC là hình bình hành B. ABCM là hình bình hành
C. M là trung điểm BC D. M là trung điểm AB
Câu 10. Cho tam giác đều
ABC
cạnh a
( 0). a
Tính độ dài vecto
u
biết
u AB AC
?
A.
2a . B.
a 3 . C.
3
2
a . D.
a .
Câu 9: Cho tứ giác
ABCD,
có bao nhiêu vectơ khác vectơ không có điểm đầu và cuối là các đỉnh
của tứ giác?
A. 12 . B. 6 . C. 4 . D. 8 .
Trang 2/28 - Mã đề thi 132
Câu 10: Chọn khẳng định đúng?
A. Hai vecto bằng nhau nếu độ dài của chúng bằng nhau.
B. Hai vecto bằng nhau nếu chúng cùng hướng và có cùng độ dài.
C. Hai vecto bằng nhau nếu hai véc tơ cùng hướng
D. Hai vecto bằng nhau nếu hai véc tơ cùng phương
Câu 11: Cho
ABC đều cạnh a, (d) là đường thẳng qua A và song song BC; khi M di động trên (d) thì
giá trị nhỏ nhất của
MA MB 2
là:
A.
2 3
3
a
B.
2 3 a
C.
a 3
D.
3
2
a
Câu 12: Cho
M N P , ,
lần lượt là trung điểm các cạnh
AB BC CA , ,
của tam giác
ABC.
Hỏi vectơ
MP NP
bằng vectơ nào?
A.
AP
B.
BP
C.
MN
D.
MB NB .
Câu 13: Cho tam giác ABC có M là trung điểm của BC. Hãy chọn kết quả đúng khi phân tích
vectơ
AM
theo hai véctơ
AB
và
AC?
A.
1 1
2 2
AM AB AC
B.
AM AB AC
C.
AM AB AC 2 3
D.
1
3
AM AB AC
Câu 14: Cho ba điểm phân biệt
A B C , , .
Đẳng thức nào sau đây đúng?
A.
AB BC CA
B.
AB CA CB
C.
AB AC BC
D.
CA BA BC
Câu 15: Cho hình bình hành
ABCD
, điểm
M
thoả mãn:
MA MC AB . Khi đó
M
là trung điểm
của:
A.
AB
B.
BC
C.
AD
D.
CD
Câu 16: Cho lục giác đều
ABCDEF
tâm
O.
Số các vectơ bằng
OC
có điểm đầu và điểm cuối là các
đỉnh của lục giác đã cho là:
A.
4
B.
2
C.
6
D.
3
Câu 17: Cho hai điểm phân biệt
A
và
B.
Điều kiện để điểm
I
là trung điểm của đoạn thẳng
AB
là:
A.
IA IB
B.
AI BI
C.
IA IB
D.
IA IB .
Câu 18: Cho tam giác
ABC.
Vectơ
AB
được phân tích theo hai vectơ
AC
và
BC
bằng
A.
AC BC
B.
AC BC
C.
AC BC D.
AC BC 2 .
Câu 19: Cho lục giác đều
ABCDEF
tâm
O.
Khẳng định đúng là:
A. Vectơ đối của
AF
là
DC
B. Vectơ đối của
EF
là
CB
C. Vectơ đối của
AO
là
FE
D. Vectơ đối của
AB
là
ED
Câu 20: Cho hình chữ nhật
ABCD
, gọi
O
là giao điểm của
AC
và
BD
, phát biểu nào là đúng?
A.
AC AD AB . B.
AC BD .
C.
OA OB OC OD 0
D.
OA OB OC OD
Câu 21: Cho tứ giác
ABCD.
Gọi
M N P Q , , ,
lần lượt là trung điểm của
AB, BC, CD, DA.
Khẳng
định nào sau đây là sai?
A.
QP MN . B.
MN QP . C.
MQ NP . D.
MN AC .
Câu 22: Cho hình bình hành
ABCD.
Gọi
G
là trọng tâm của tam giác
ABC.
Mệnh đề nào sau đây
đúng?
A.
GA GC GD CD. B.
GA GC GD BD . C.
GA GC GD AD . D.
GA GC GD O .
Câu 23: Cho tam giác
ABC,
gọi
M
là trung điểm của
AB
và
N
thuộc cạnh
AC
sao cho
NC NA 2
. Hãy xác định điểm
K
thỏa mãn:
3 2 12 0 AB AC AK
và điểm
D
thỏa mãn:
3 4 12 0 AB AC KD .B.
K
là trung điểm của
BC
và
D
là trung điểm của
MN .
C.
K
là trung điểm của
MN
và
D
là trung điểm của
AB .
D.
K
là trung điểm của
MN
và
D
là trung điểm của
AC .
Câu 24: Cho
ABC
có trung tuyến
AM
và trọng tâm
G
. Khẳng định nào sau đây đúng:
A.
2
.
3
AG AB AC
B.
AM MG 3
C.
1
3
MG MA MB MC
D.
AM AB AC
Câu 25: Gọi
M, N
lần lượt là trung điểm của các cạnh
AB AC ,
của tam giác đều
ABC.
Đẳng thức
nào sau đây đúng?
A.
MA MB . B.
AB AC . C.
MN BC . D.
BC MN 2 .
----------- HẾT -----------TRƯỜNG THPT THANH MIỆN ĐỀ KIỂM TRA CHUNG 45 PHÚT
MÔN: TOÁN
Thời gian làm bài: 45 phút;
(25 câu trắc nghiệm)
Mã đề thi
134
Câu 1: Cho tam giác
ABC , số điểm
M
thoả mãn:
MA MB MC 1
là:
A. 0 điểm B. 2 điểm C. 1 điểm D. vô số điểm
Câu 2: Hai véc tơ có cùng độ dài và ngược hướng gọi là:
A. Hai véc tơ đối nhau. B. Hai véc tơ cùng hướng.
C. Hai véc tơ bằng nhau. D. Hai véc tơ cùng phương.
Câu 3: Cho hai vectơ
a
và
b
không cùng phương. Hai vectơ nào sau đây cùng phương?
A.
3a b
và
1
6
2
a b
B.
1
2
a b
và
2a b
C.
1
2
a b
và
a b 2 . D.
1
2
a b và
1
2
a b
Câu 4: Cho hình bình hành
ABCD.
Đẳng thức nào sau đây đúng?
A.
BA AD AC
B.
BC BA BD
C.
AB AD CA
D.
AB BC CA
Câu 5: Cho
ABC
với
G
là trọng tâm. Đặt
CA a
, CB b
. Khi đó,
AG
được biểu diễn theo hai
vectơ
a
và
b
là :
A.
1 2
3 3
AG a b . B.
2 1
3 3
AG a b . C.
2 1
3 3
AG a b . D.
2 1
3 3
AG a b .
Câu 6: Cho hình chữ nhật
ABCD
và
I
là giao điểm của hai đường chéo. Tập hợp các điểm
M
thỏa mãn
MA MB MC MD
là :
A. Trung trực của đoạn thẳng
AB.
B. Trung trực của đoạn thẳng
AD.
C. Đường tròn tâm
I,
bán kính .
2
AC
D. Đường tròn tâm
I,
bán kính .
2
AB BC
Câu 7: Cho tam giác
ABC
với M là một điểm nằm trong tam giác. Gọi
, , a b c S S S
lần lượt là diện
tích các tam giác MBC, MAC,MAB. Đẳng thức nào sau đây đúng?
A.
0 a b c
S MA S MB S MC
B.
1 1 1 0
a b c
MA MB MC
S S S
C.
0 b c a
S MA S MB S MC
D.
0 a b c
S MA S MB S MC
Câu 8: Ba trung tuyến
AM BN CP , ,
của tam giác
ABC
đồng quy tại
G.
Hỏi vectơ
AM BN CP
bằng vectơ nào?
A.
3
2
GA GB CG . B.
3MG NG GP . C.
1
2
AB BC AC . D.
0 .
Câu 9: Cho lục giác đều
ABCDEF.
Số các vectơ ( khác vecto không ) có điểm đầu và điểm cuối
thuộc các đỉnh của lục giác đã cho là:
A.
30 . B.
36 . C.
6 . D.
12
Câu 10: Cho tứ giác
ABCD. Có thể xác định được bao nhiêu vectơ (khác
0
) có điểm đầu và điểm
cuối là các điểm
A B C D , , , ?
A.
4
B.
12. C.
10. D.
8 .
Câu 11: Cho tam giác
ABC
nội tiếp trong đường tròn tâm
O . Gọi
H
là trực tâm của tam giác.
Trong các khẳng định sau, khẳng định nào đúng?
Trang 5/28 - Mã đề thi 134
A.
OH OG 2
B.
3OH OG
C.
OH OG 4
D.
2
3
HG HO
Câu 12: Cho tam giác
ABC,
điểm
M
thuộc cạnh
AB
sao cho
3AM AB
và
N
là trung điểm của
AC.
Biểu diễn
MN
theo
AB
và
AC ?
A.
1 1
.
2 3
MN AC AB
B.
1 1
.
2 3
MN AC AB
C.
1 1
.
2 3
MN AB AC
D.
1 1
.
3 2
MN AC AB
Câu 13: Cho tam giác đều
ABC
và điểm
I
thỏa mãn
IA IB 2 .
Mệnh đề nào sau đây đúng ?
A.
CI CA CB 2 .
B.
2
.
3
CA CB CI
C.
1 2
3 3
CI CA CB
D.
2
.
3
CA CB CI
Câu 14: Cho tam giác ABC. Khẳng định nào sau đây đúng?
A.
AA BB AB . B.
CA BA CB . C.
AC BA BC . D.
AB AC BC .
Câu 15: Cho tam giác
ABC
với trực tâm
H, D
là điểm đối xứng với
B
qua tâm
O
của đường
tròn ngoại tiếp tam giác
ABC.
Khẳng định nào sau đây là đúng?
A.
HA CD
và
AD CH
B.
HA CD
và
DA HC
C.
HA CD
và
AD HC
D.
HA CD
và
AD HC
và
OB OD .
Câu 16: Cho hình bình hành
ABCD.
Trong các khẳng định sau hãy tìm khẳng định sai?
A.
AB DC
B.
AD CB . C.
AB CD . D.
AD CB
Câu 17: Cho hai điểm A và B phân biệt, điều kiện nào dưới đây là điều kiện cần và đủ để điểm
O
là trung điểm của đoạn
AB?
A.
AO BO
B.
OA OB
C.
OA OB 0
D.
OA OB
Câu 18: Cho tam giác
MNP
. Vectơ
MN
được phân tích theo hai vectơ
MP
và
NP
bằng:
A.
MP NP
B.
MP NP C.
MP NP
D.
MP NP 2 .
Câu 19: Cho 4 điểm O,A,B,C phân biệt. Chọn đẳng thức đúng:
A.
BC AB CA
B.
OC OA CA
C.
AB CB AC
D.
BA CA BC
Câu 20: Cho hình chữ nhật
ABCD
, gọi
O
là giao điểm của
AC
và
BD,
phát biểu nào là đúng?
A.
AC AD AB . B.
AC BD .
C.
OA OB OC OD 0
D.
OA OB OC OD
Câu 21: Cho lục giác đều
ABCDEF
và
O
là tâm của nó. Đẳng thức nào sau đây đúng?
A.
BC EF AD . B.
OA OC OE 0 . C.
OA OC OB EB. D.
AB CD EF 0
Câu 22: Cho
O
là tâm hình bình hành
ABCD.
Hỏi vectơ
AO DO
bằng vectơ nào?
A.
BC . B.
BA . C.
AC . D.
DC .
Câu 23: Cho tam giác
ABC
và đường thẳng
d.
Gọi
O
là điểm thỏa mãn hệ thức
OA OB OC 2 0
. Tìm điểm
M
trên đường thẳng
d
sao cho vectơ
v MA MB MC 2
có độ dài
nhỏ nhất?
A. Điểm
M
là hình chiếu vuông góc của
O
trên
d .
B. Điểm
M
là hình chiếu vuông góc của
A
trên
d .
C. Điểm
M
là hình chiếu vuông góc của
B
trên
d .
D. Điểm
M
là giao điểm của
AB
và
d .
Câu 24: Cho tam giác
ABC
có
M
thỏa mãn điều kiện
MA MB MC 0.
Xác định vị trí điểm
M ?
A.
M
là trung điểm của đoạn thẳng
AB .
B.
M
trùng
C .
C.
M
là trọng tâm tam giác
ABC .
D.
M
là điểm thứ tư của hình bình hành
ACBM .
Trang 6/28 - Mã đề thi 134
Câu 25: Cho hình chữ nhật
ABCD
biết
AB a 4
và
AD a 3 .
Tìm
AB AD ?
A.
7a
B.
6a
C.
2 3 a . D.
5
0 Nhận xét