SỞ GIÁO DỤC VÀ ĐÀO TẠO
NGHỆ AN
KỲ THI TUYỂN SINH VÀO LỚP 10
TRƯỜNG THPT CHUYÊN – TRƯỜNG ĐH VINH
Năm học 2007-2008
Đề số 30
Môn thi chuyên: TOÁN (vòng 2)
Thời gian làm bài: 120 phút, không kể thời gian giao đề.
Câu 1:
a) Tìm nghiệm nguyên của phương trình
5x 2007y 1
, trong đó
x1; 3000.
b) Chứng minh rằng
5 2 11 3 2 2 3
n n
, với mọi số tự nhiên
n .
Câu 2: Xác định các số nguyên tố
p, q
sao cho
2 2
p pq2q
và
2 2
2p pqq
là các số
nguyên tố cùng nhau.
Câu 3: Cho các số thực dương
a, b, c
thoả mãn
a b c6
. Chứng minh rằng
6
3
3
2
4
1
5
c
a b
b
c a
a
b c
.
Dấu đẳng thức xảy ra khi nào?
Câu 4: Cho đường tròn tâm O bán kính R và một điểm H nằm trong đường tròn. Qua H ta
vẽ hai dây cung AB và CD vuông góc với nhau.
a) Tính
2 2 AB CD
theo
R
, biết rằng
2
R
OH .
b) Gọi M, N, P lần lượt là trung điểm của các đoạn thẳng AC, BD, OH. Chứng minh rằng
M, N, P thẳng hàng.
Câu 5: Trong một tam giác có cạnh lớn nhất bằng 2, người ta lấy 5 điểm phân biệt. Chứng
minh rằng trong 5 điểm đó luôn tồn tại hai điểm mà khoảng cách giữa chúng không vượt
quá 1.
----------Hết----------
0 Nhận xét