Đề bài


Câu 1. (2 điểm)

   1) Tìm tập xác định của hàm số f(x)=x232x3+22x

   2) Cho tập hợp A(1;3] và B=(m2;m+3]. Tìm m để AB=.


Câu 2. (2 điểm)

   1) Tìm m để hàm số f(x)=4mx+3(5+2m)x đồng biến trên R.

   2) Xét tính chẵn lẻ của hàm số f(x)=2x45x+3.


Câu 3. (2 điểm)

   1) Lập bảng biến thiên và vẽ đồ thị hàm số y=x24x

   2) Tìm m để phương trình x24x=m+3 có 2 nghiệm âm phân biệt.


Câu 4. (2 điểm)

Trong mặt phẳng Oxy cho M(3;1),N(1;2),P(2;4).

   1) Tìm tọa độ trọng tâm G của tam giác MNP và tọa độ điểm D sao cho MNGD là hình bình hành.

   2) Tam giác ABC nhận M,N,P lần lượt là trung điểm của các cạnh AB,BC,AC. Tính tọa độ các điểm A,B,C.


Câu 5. (1 điểm)

Tìm a, b, c để đồ thị hàm số y=ax2+bx+c là đường Parabol có đỉnh I(2;2) và đi qua điểm A(0;2).


Câu 6. (1 điểm)

   1) Cho tam giác ABC có trọng tâm G và hai điểm P,Q thỏa mãn PA=2PB3QA=2QC. Chứng minh rằng ba điểm P,Q,G thẳng hàng.

   2) Cho tam giác ABC đều cạnh a nội tiếp đường tròn (O). Điểm M thuộc (O). Tìm giá trị lớn nhất, nhỏ nhất của |MA+MBMC|















































Lời giải chi tiết

Câu 1. (VD)

1) Tìm tập xác định của hàm số f(x)=x232x3+22x

2) Cho tập hợp A(1;3] và B=(m2;m+3]. Tìm m để AB=.

Phương pháp

1) Hàm y=1f(x) xác định khi và chỉ khi f(x)>0.

Hàm y=f(x) xác định khi và chỉ khi f(x)0.

2) Hai tập số trong R được gọi là giao bằng rỗng nếu chúng rời nhau trên R.

Cách giải

1) Điều kiện xác định:

{2x3>02x0{x>32x2

Tập xác định: D=(32;2]

2) AB=[m23m+31[m5m4

Câu 2. (TH)

1) Tìm m để hàm số f(x)=4mx+3(5+2m)x đồng biến trên R.

2) Xét tính chẵn lẻ của hàm số f(x)=2x45x+3.

Phương pháp

1) Hàm số y=ax+b đồng biến trên R khi và chỉ khi a>0.

2) Các bước xét tính chẵn- lẻ của hàm số y=f(x)

B1: Tìm tập xác định D của hàm số.

B2: Kiểm tra điều kiện xDxD

B3: Kiểm tra điều kiện:

Nếu f(x)=f(x)xD thì f(x) là hàm số chẵn.

Nếu f(x)=f(x)xD thì f(x) là hàm số lẻ.

Nếu xD:f(x)±f(x)  thì hàm số không chẵn không lẻ.

Cách giải

1) Ta có:

f(x)=4mx+3(5+2m)x=(2m5)x+3

f(x) đồng biến trên R khi và chỉ khi 2m5>0m>52

2) TXĐ: D=R

Ta có: xRxR

f(x)=2(x)45(x)+3=2x4+5x+3±f(x)

Do đó hàm số không chẵn, không lẻ.

Câu 3. (VD)

1) Lập bảng biến thiên và vẽ đồ thị hàm số y=x24x

2) Tìm m để phương trình x24x=m+3 có 2 nghiệm âm phân biệt.

Phương pháp

1) Hàm số y=ax2+bx+c(a0) có đỉnh I(b2a;Δ4a) nhận trục x=b2a làm trục đối xứng.

Nếu a>0 thì hàm số đồng biến trên (b2a;+), nghịch biến trên (;b2a) và đồ thị có bề lõm hướng lên trên.

Nếu a<0 thì hàm số đồng biến trên (;b2a), nghịch biến trên  (b2a;+) và đồ thị có bề lõm hướng xuống dưới.

2) Nghiệm của phương trình f(x)=g(x) là hoành độ các giao điểm của hai đồ thị hàm số y=f(x) và y=g(x).

Cách giải

1) Ta có: a=1<0,  b2a=2  và Δ4a=4.

Hàm số đồng biến trên (;2) và nghịch biến trên (2;+).

Bảng biến thiên:

 

a=1<0, bề lõm hướng xuống dưới.

Đồ thị có đỉnh I(2;4), nhận đường thẳng x=2 làm trục đối xứng.

Đồ thị đi qua điểm O(0;0),A(4;0)

Đồ thị:

 

2) Hoành độ giao điểm của đồ thị y=f(x) và đường thẳng y=m+3 là nghiệm của phương trình x24x=m+3.

Do đó phương trình x24x=m+3 có 2 nghiệm âm phân biệt khi và chỉ khi đường thẳng y=m+3 cắt đồ thị tại 2 điểm có hoành độ âm phân biệt.

 

Từ đồ thị ta có đường thẳng y=m+3 cắt đồ thị tại 2 điểm có hoành độ âm phân biệt khi và chỉ khi 0<m+3<43<m<1.

Vậy 3<m<1.

Câu 4. (VD)

Trong mặt phẳng Oxy cho M(3;1),N(1;2),P(2;4).

1) Tìm tọa độ trọng tâm G của tam giác MNP và tọa độ điểm D sao cho MNGD là hình bình hành.

2) Tam giác ABC nhận M,N,P lần lượt là trung điểm của các cạnh AB,BC,AC. Tính tọa độ các điểm A,B,C.

Phương pháp

1) Trọng tâm G của tam giác MNP là {xG=xM+xN+xP3yG=yM+yN+yP3

MNGDMN=DG

2) Sử dụng tính chất trung điểm M là trung điểm của ABAM=MB.

Hiệu của hai vectơ: ABAC=CB.

Cách giải

 

1) Trọng tâm G của tam giác MNP nên tọa độ của G là:

 {xG=xM+xN+xP3=2yG=yM+yN+yP3=1

MNGDMN=DG{xD=xGxN+xM=4yD=yGyN+yM=4D(4;4)

2) M,N,P lần lượt là trung điểm của AB,BC,AC

{AM=MB=12ABBN=NC=12BCAP=PC=12ACMP=12(ACAB)=BN

{xB=xN+xMxP=2yB=yN+yMyP=5

M là trung điểm của AB nên {xA=2xMxByA=2yMyBA(4;7)

N là trung điểm của BC nên {xC=2xNxByC=2yNyBC(0;1)

Vậy A(4;7),B(2;5),C(0;1).

Câu 5. (VD)

Tìm a, b, c để đồ thị hàm số y=ax2+bx+c là đường Parabol có đỉnh I(2;2) và đi qua điểm A(0;2).

Phương pháp

Đồ thị hàm số y=ax2+bx+c có đỉnh I(b2a;Δ4a).

A(x0;y0) thuộc đồ thị y0=ax0+bx0+c.

Cách giải

Đồ thị hàm số y=ax2+bx+c có đỉnh I(b2a;Δ4a) nên ta có:

{b2a=22=a.22+b.2+c{b=4a4a+2b+c=2(1)

A(0;2) thuộc đồ thị nên c=2. Thay vào (1) ta được:

{b+4a=04a+2b=4{a=1b=4.

Vậy a=1,b=4,c=2

Câu 6. (VDC)

1) Cho tam giác ABC có trọng tâm G và hai điểm P,Q thỏa mãn PA=2PB3QA=2QC. Cứng minh rằng ba điểm P,Q,G thẳng hàng.

2) Cho tam giác ABC đều cạnh a nội tiếp đường tròn (O). Điểm M thuộc (O). Tìm giá trị lớn nhất, nhỏ nhất của |MA+MBMC|

Phương pháp

1) P, Q, G thẳng hàng khi và chỉ khi k0:PG=kPQ.

2)

B1: Gọi N là trung điểm của AB, O’ là điểm đối xứng O qua N, M' đối xứng M qua N.

B2: Tìm quỹ tích điểm M’.

B3: |MA+MBMC|=CM . Đánh giá CM’ tìm giá trị lớn nhất, nhỏ nhất cần tìm.

Cách giải

1)

 

PA=2PBAB=AP+PB=12AP

3QA=2QCAC=AQ+QC=AQ+32AQ=52AQ

PQ=AQAP=25AC2AB

PG=PA+AG

=2AB+23.12(AB+AC)=13AC53AB=56(25AC2AB)=56PQ

Suy ra PQ,PG cùng phương. Hay P, Q, G thẳng hàng.

2)

 

Gọi N là trung điểm của AB, O’ là điểm đối xứng O qua N, M’ đối xứng M qua N. Khi đó:

|MA+MBMC|=|2MNMC|=|MMMC|=|CM|=CM

Ta có tam giác ABC đều cạnh a nội tiếp đường tròn (O) nên (O) có bán kính a3.

Mặt khác, ta có: {ON=NOMN=NMOM=MO

OM=a3.

Do O, N cố định nên M’ luôn thuộc đường tròn tâm O’, bán kính a3.

COCMCC (C’ đối xứng C qua N).

min(|MA+MBMC|)=a khi CM=a=COMO. Suy ra O là điểm đối xứng M qua N. Hay M, C, O thẳng hàng.